

Reactions of *cis-Stannyl-boryl-alkenes with Sulfur Bis(trimethylsilylimide)* and N -Sulfinyl(trimethylsilyl)amine $-$ X-ray Analysis of an 1-Amino-1 λ^4 -thia-2**azonia-3-borata-1,4-cyclopentadiene**

Bernd Wrackmeyer" a, Klaus Wagner a and Roland Boese

Laboratorium für Anorganische Chemie der Universität Bayreuth^a, Postfach 101251, W-8580 Bayreuth, F.R.G.

Institut für Anorganische Chemie der Universität-GH Essen^b, Universitätsstraße 5-7, W-4300 Essen, F.R.G.

Received August 20, 1992

Key Words: cis-Stannyl-boryl-alkenes / Sulfur bis(trimethylsily1amide) / **N-Sulfinyl(trimethylsily1)amine** / NMR, multinuclear

New heterocyclic systems (1-amino-1 λ^4 -thia-2-azonia-3-borata-1,4-cyclopentadienes **4a** and **4b**, a 1 λ ⁴-thia-2-aza-3-bora-1cyclopentanone **7** and a 1-trimethylstannyloxy-1 λ^4 -thia-2**azonia-3-borata-l,4-~yclopentadiene** *8)* are formed by reaction *of* **(E)-2-diethylboryl-l-trimethylstannyl-l-butene (1 a)** and *(E)-* **3-diethylboryl-2-trimethylstannyl-2-pentene (1b)** with sulfur bis(trimethylsily1imide) **(2)** and **N-sulfinyl(trimethylsily1)amine (3).** There is a marked influence of other substituents at the

 $C = C$ bond on the product distribution. It appears that all reactions proceed via an intermediate borane adduct **A.** In **A** the proximity of the electrophilic site of **2** or **3** to various reactive sites of the alkene derivative opens the way to the final products. The proposed structures are supported by consistent ¹H-, ¹¹B-, ¹³C-, ²⁹Si- and ¹¹⁹Sn-NMR data. In the case of compound **4a an** X-ray analysis has been carried out.

Organometallic-substituted alkenes offer numerous reactive sites for useful transformations. Organometallic substituents in *cis* position at the $C = C$ bond may exert a combined influence on the reactivity of the alkene. Alkene derivatives of type **1** with *cis* arrangement are readily accesible by organoboration of alkynyltin compounds^[1]. The combined effect of substituents such as a boryl and a stannyl group is particularly attractive for studying the reactivity of **1** towards reagents which contain at least one nucleophilic and one electrophilic center (Nuc \sim El).

$$
Me_3
$$
Sn
\n $R^{1/2} = C$ $\begin{matrix} BEt_2 \ Et \end{matrix}$ 1 |**a b**
\n R^{1}/H Me

In the weak borane adduct **A** the respective reactive centers can be in close contact. The result of the following intramolecular processes then depends mainly on \mathbb{R}^1 , the nature of the reagent used and, possibly, on the reaction conditions, e.g. on the solvent^[2]. We have already shown that lithium amides^[3], tin amides^[2,3], tin alkoxides^[2] or methanol^[2] are useful reagents in this respect. Similarly, new heterocyclic systems are obtained when the reagent $Nuc \sim El$ is linked first to the tin atom by nucleophilic displacement of $Cl^-(B)$ as shown in the reaction of sulfur diimide anions with **(E)-2-chloro(dimethyl)stannyl-3-diethylboryl-2-pen** t ene^[4]. In this paper, we report on the reaction of 1 with sulfur bis(trimethylsilylimide) (2) and N-sulfinyl(trimethylsilyl)amine (3) . In these compounds^[5] the nitrogen atoms, or possibly also the oxygen atom, are the nucleophilic centers, and the sulfur atom represents the electrophilic center in Nuc \sim El.

Results and Discussion

A smooth reaction takes place between **1 a** and **2** in hexane when the reaction mixture is warmed from -78° C to ambient temperature. This process affords the 1-amino-1 λ^4 thia-2-azonia-3-borata-1,4-cyclopentadiene **4a** in almost quantitative yield (Eq. 1). Under the same conditions **4b** is also formed, but in a much lower yield **(30%)** together with numerous unidentified products. The structures of **4a** and **4b** are based on a consistent set of NMR data (see Table l), and in the case of **4a** suitable crystals for X-ray analysis (vide infra) have been obtained.

In the absence of the Me₃Sn group, the reaction takes a different course as shown for the alkenylborane **5** (Eq. 2). Again, one can assume the formation of a weak borane adduct analogous to A, followed by cleavage of the $B - C =$ bond to give *6.*

The behavior of the N-sulfinylamine **3** in its reaction with **la** is rather different from that of **2.** Under the same conditions, compound **3** reacts readily with **la** to give a *lh4* **thia-2-aza-3-bora-l-cyclopentanone** derivative **7** (Eq. 3a). However, the reaction of **3** with **1 b** affords a l-trimethylstannyloxy-1 λ^4 -thia-2-azonia-3-borata-1,4-cyclopentadiene **8,** analogous to **4b** (Eq. 3b). Starting from **A,** the attack at the $C=C$ bond is accompanied by a 1,2-shift of an ethyl group from the boron to the neighbored olefinic carbon atom, leading to **7.** This type **of** reaction has also been observed in the treatment of 1a with Me₃SnOMe or Me₃SnNMe₂ (in hexane)^[2], and there are indications that this is the kinetically controlled process. The fast electrophilic attack at the C=C bond is hampered if R^1 = Me. Then the intermediate formation of the $N -$ borane adduct is followed by electrophilic cleavage of the $Sn-C= bond$ (as in the case of **4a, b)** to give the heterocycle **8.**

It appears that differing kinetic effects are important and that the sulfur atom in **3** is more electrophilic than in **2.** Thus, there is no indication of a reaction between **la** and **2** according to Eq. 3b. This points to the influence of kinetic effects which can be expected in view of the difference between an $S = O$ and an $S = N - \text{SiMe}_3$ fragment. Since the reaction between **1 b** and **2** leads to numerous products (possibly including one analogous to *6),* these side reactions compete efficiently with the electrophilic attack at the $Sn - C =$ bond. In contrast, steric hindrance to the clean reaction of **1 b** with **3** is weaker than with **2,** and the electrophilic character of the sulfur atom in **3** is sufficiently high for preferred cleavage of the $Sn - C = bond$. There are reactions of or-
ganotin compounds (mostly with functional groups linked to tin) with sulfur diimides or N-sulfinylamines described in the literature^[6]. In some of these the Sn - C bond is cleaved, and an organyl group migrates to the sulfur atom, compaganotin compounds (mostly with functional groups linked $\frac{[a]}{2}$ Measured in 5-mm (o.d.) tubes at 25^oC in C₆D₆ (ca. 10%); cou-
pling constants $J_1^{(119}Sn^{13}C)$, $J_2^{(119}Sn^{23}Si)$ in Hz are given in square and an organyl group migrates to the sulfur atom, compa-
and ¹³C(CH₂CH₃) resonance signals may be reversed. - rable to the reaction in Eq. 1. However, the dependence of ^[d] δ ¹³C(CH₂CH₃) = 12.7, 11.2.

the reactions on the substituents $R¹$ (e.g. formation of 7 or **8)** indicates that the combined action of the boryl and stannyl groups is responsible for the reaction pathways reported here.

The compounds **4a, b, 7** and **8** are colorless, crystalline solids which can be purified by repeated recrystallization. Compound 6 is a yellowish liquid (purity $> 90\%$), and so far we have failed to purify it by distillation, chromatography (decomposition) or crystallization at low temperature $(-78 \degree C)$. All products are extremely sensitive to traces of moisture which have caused severe problems with the application of other analytical methods, e.g. solid-state ${}^{13}C$ -, ${}^{29}Si$ or '19Sn-CP/MAS NMR spectroscopy of **4a, b, 7** and **8.**

NMR Spectra

NMR data (Table 1) are fully in accord with the proposed structures of **4a, b, 6** and **8.** In these compounds the tetracoordinate boron atom is evident from the typical^[7,8] $\delta^{11}B$ values $(\delta^{11}B = 7 - 11)$. The ¹H- and ¹³C-NMR spectra are readily assigned. Figure 1 shows the 13 C-NMR spectrum of compound 7 as a typical example with broadened 13 C resonance signals for boron-bound carbon atoms^[8] and $117/119$ Sn satellites arising from $J(Sn^{13}C)$. The $\delta^{29}Si$ values are in agreement with the presence of $Me₃SiN$ groups^[9], and the differing 29Si environments in **4a, b** are assigned according to the geminal coupling constant ${}^{2}J(\text{SnN}^{29}\text{Si})^{[10]}$. In the case of 4a and **4b**, the δ^{119} Sn values (δ^{119} Sn = 72.9, 73.6) are typical of

Table 1. ¹¹B-, ¹³C-, ²⁹Si- and ¹¹⁹Sn-NMR data^[a] of the heterocycles **4a, 4b, 7** and **8**

	$C-4$ $C-5$		$\delta^{13}C$,SiMe ₁ N SnMe, $O-SnMe2$	BNSiMe ₂ BEt		$\delta^{11}B$	δ ²⁹ Si	δ^{119} Sn
	4a 188.2 [br] 25.5 12.3	119.2 $\lbrack 2 \rbrack$	3.6, 0.5 [373.0]	3.1	19.3,12.3 +7.1 [br] 19.2,10.7 ^[b] [br]		$+6.7$ $+11.9$ [8.8]	$+72.9$
	4b 177.0 [br] 24.2 12.8 ^[c] 12.4 [c]	125.7 [10.2]	$3.8, -0.5$ [371.9]	3.4	$18.8,11.3$ +8.7 +6.6 [br] $14.8,10.8$ ^[b] [br]		$+12.3$ [9.3]	$+73.6$
7	52.1 [br] 34.4 $[d]$ -6.5 $31.3^{[d]}$ [34.5]	66.2 [288.2] $[35.0]$ $[344.7]$		1.8	10.3 , $9.1 + 56.5 + 10.4 - 20.2$ [br]			
8	178.3 [br] 23.0 12.0	129.6 [< 2] 12.6	-1.4 [390.0]	2.5	16.7.12.0 +8.7 6.9 [br] 15.9, 10.7 ^[b] [br]			$+165.6$

pling constants $J("BnC), J("BnS)$ in Hz are given in square
brackets; [br] denotes the broad ¹³C resonance signal of a boronbrackets; [br] denotes the broad ¹³C resonance signal of a boron-
bound carbon atom. - ^[b] The assignment of the ¹³C(CH₃) resonance
signals may be reversed. - ^[c] The assignment of the ¹³C(=CCH₃) Me,SnN groups, and in the case of **8,** the deshielding of $(\delta^{119}Sn = +165.6)$ indicates the Me₃Sn-O linkage^[11]. In contrast, substantial shielding of ^{119}Sn in **7** ($\delta^{119}Sn = -20.2$) is expected for a tin atom surrounded by four alkyl $groups^[11]$, in agreement with the observation of the coupling constants ${}^{1}J(Sn^{13}C)$ in the ${}^{13}C\text{-NMR}$ spectrum (Figure 1).

Figure 1. 75.5-MHz ¹³C{¹H}-NMR spectrum of 7 in C_6D_6 (coupling constants are given in Hz); note the ^{117/119}Sn satellites as indicated and the broad ¹³C resonance signals for the boron-bound carbon atoms labeled b and g

The proposed structure of **7** does not follow unequivocally from the NMR data. Although the δ^{11} B value (56.8) clearly indicates the trigonal planar surrounding of the boron atom, the δ^{11} B value could, in principle, also be assigned to isomers of **7 (7'** or **7").**

The formation of $7'$ would either require the O - borane adduct in the first step of the reaction or a rearrangement of **7.** Structure **7"** results from **7** by a 1,3-migration **of** the Me₃Si group. However, the deshielding of ¹³C-5 (δ ¹³C-5 $=$ 66.2) and of $5⁻¹H$ ($\delta^1H = 2.80$) is in keeping with the sulfoxide moiety in 7. If structure 7" with a Me₃SiO group was correct, the 29 Si resonance signal should be located at significantly higher frequency.

X-ray Analysis of Compound 4a

Experimental data of the X-ray analysis are given in Table $2^{[12]}$. Selected bond distances and bond angles are given in Figure 2, and Table 3 contains atomic coordinates and equivalent isotropic displacement factors. The five-membered ring is almost planar (mean deviation 2.7 pm). The surrounding of N(2) is exactly trigonal planar, whereas for $N(1)$ a pyramidal geometry is observed where the $N(1) - Si(1)$ bond forms an angle of ca. 20° with the mean plane of the ring. The bond lengths are all in the expected range. There is little difference between the two values $d_{S-N(1)}$ [162.7(4) pm] and $d_{S-N(2)}$ [165.4(4) pm] which are both in between the ranges for $S-N$ double and $S-N$ single bonds. This indicates delocalization of the formal positive charge over the $N-S-N$ moiety. In other molecular structures of comparable compounds^[4,13], it has been observed that both B ethyl groups are bent towards the ring. In the case of **4a,** the bulkiness of the $Me₃SnN(2)$ group appears to prevent this particular arrangement of one of the B-ethyl groups. Similarly, the arrangement of the $Me₃Si(Me₃Sn)N(2)$ group, where the Si(Sn)NS plane almost bisects the heterocycle, is enforced by steric constraints.

Figure 2. Molecular structure of **4a** (H atoms are not shown for simplicity); selected bond distances [pm] and angles [°] Sn-N(2) 210.3(4), Sn -C(7) 21 1.4(5), Si(1)-N(l) 175.5(4), Si(1)- C(4) 185.4(5), Si(2) - N(2) 180.2(4), Si(2) - C(16) 186.2(5), S - N(l) 162.7(4), S - C(1) Sn – C(6) 211.3(5), S – N(2) 165.4(4), N(1) – B 163.8(7), B – C(11)
163.9(8), C(1) – C(2) 132.9(7), C(9) – C(10) 151.1(7), C(13) – C(14)
154.6(7); N(1) – S – N(2) 111.8(2), N(2) – S – C(1) 105.1(2),
Si(1) – N(1) – B 125.0 $Si(2) - N(2)$ 180.2(4), $Si(2) - C(16)$ 186.2(5), S - $N(1)$ 162.7(4), S - $C(1)$ 174.2(5), B - C(2) 162.3(6), B - C(13) 162.1(8), C(2) - C(9) 151.1(8), $N(1)-S-C(1)$ 96.1(2), $Si(1)-N(1)-S$ 115.6(2), $S-N(1)-S$ 114.2(3), $Sn - N(2) - S$ 121.7(2), $N(1) - B - C(2)$ 99.8(4), $S - C(1)$ $\overline{S_1(1)} - \overline{N}(1) - \overline{B}'$ 125.0(3), $\overline{S_1} - \overline{N}(2) - \overline{S_1}(2)$ 121.1(2), $\overline{B} - \overline{C}(2) - \overline{C}(1)$
115.2(4), $\overline{C}(1) - \overline{C}(2) - \overline{C}(9)$ 122.3(4), $\overline{B} - \overline{C}(11) - \overline{C}(12)$ 117.7(4),

Conclusions

Alkene derivatives of type **1** have again proved useful in reactions with reagents of the type Nuc \sim El. The structure of all the products obtained can be traced to the intermediacy of a weak borane adduct **A,** consistent with previous studies of the reactivity of $1^{[2,3]}$. The dependence of the product distribution on kinetic and electronic effects is fascinating since rather subtle changes induce a completely different course of the reaction (e.g., **Eq.** 3a and 3b). Considering the enormous diversity of systems with cumulated double bonds, similar to **2** and **3,** the reactions introduced here are promising for the synthesis of a large number of new heterocyclic systems.

Support of this work by the *Volkswagen-Stijtung,* the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank Prof. Dr. *M. Herberhold* (Bayreuth) for providing a sample of compound 3, Dr. *W. Milius* (Bayreuth) for helpful discussions and Prof. Dr. R. *Köster* (Mülheim) for performing elemental analyses and providing a sample of compound **5.**

Experimental

All reactions and handling of samples for measurements were carried out under N_2 using carefully dried solvents and observing all precautions to exclude air and moisture. $-$ Elemental analyses: Dornis and Kolbe, Mülheim and Pascher, Remagen. - EI MS: Varian MAT CH 7; 70 eV, direct inlet. $-$ ¹H and ¹³C NMR: Bruker AC 300 (300.13 and 75.5 MHz, respectively). $-$ ¹¹B NMR: Jeol FX 90 Q (28.7 MHz) and Bruker AC 300 (96.3 MHz); Et_2O \cdot BF₃ (external). $-$ ²⁹Si NMR [refocused INEPT pulse sequence based on $^{2}J(^{29}SiC^{1}H) = 7 Hz$]: Bruker AC 300 (59.7 MHz), Jeol FX 90 Q (17.8 MHz); Me₄Si (external). $-$ ¹¹⁹Sn NMR: Bruker AC 300 (111.9 MHz), Jeol FX 90 Q (33.3 MHz); Me₄Sn (external). $-$ X-ray analysis: Nicolet $R3m/V$. - Starting materials: The alkene derivatives **1a** and $1b^{[14]}$ and the sulfur diimide $2^{[15]}$ were prepared according to literature procedures.

3,3,4- Triethyl-2-trimethylsilyl-l-[trimethylsilyl(trimethylstanny1)amino J-1L4-thia-2-azonia-3-borata-l ,I-cyclopentadiene **(4 a)** *and 3,3,4- Triethyl-5-methyl-2-trimethylsilyl-1 -[trimethylsilyl(trimethylstannyl)amino]-1* λ^4 *-thia-2-azonia-3-borata-1,4-cyclopentadiene* (4b): A solution of 1.03 g (5.00 mmol) of the sulfur diimide **2** in 50 ml of hexane was cooled to -78 °C. The alkene derivative 1 a $(0.93 \text{ g}, 5.00 \text{ m})$ mmol) was added in one portion, and the stirred mixture was warmed to room temp. and stirred for 5 h. After the solvent was removed, the residue was recrystallized from hexane or hexane/ toluene (10: 1) to give 2.00 g (81%) of compound **4a** as colorless crystals (m.p. 122° C). - The same procedure was applied to the preparation of **4b.** However, the yield was lower (30%), and recrystallization had to be repeated several times in order to obtain colorless needles of **4b** (m.p. 125 °C).

4a: ¹H NMR (C₆D₆, 25^oC): δ [J(¹¹⁹Sn¹H)] = 0.12 (s, 9H; SiMe₃); 0.26 [57.2] (s, 9H; SnMe₃); 0.27 (s, 9H, SiMe₃); 0.40 - 1.20 (m, 13H; BEt₂, CH₃); 2.26 (in, 2H; = CCH₂); 5.29 (s, 1H; = CH).

 $C_{17}H_{43}BN_2SSi_2Sn$ (493.3)

Calcd. C 41.39 H 8.79 N 5.68 **S** 6.50 Si 11.39 Sn 24.06 Found C 41.22 H 8.63 N 5.82 **S** 6.55 Si 11.16 Sn 25.21

4b: ¹H NMR (C₆D₆, 25^oC): δ [J(¹¹⁹Sn¹H)] = 0.15 (s, 9H; SiMe₃); 0.31 (s, 9H, SiMe₃); 0.32 [57.6] (s, 9H; SnMe₃); 0.65 (m, 4H), 1.08 $(t, 6H)$ (BEt₂); 1.22 (t, 3H; CH₃); 1.66 (s, 3H; = CCH₃); 2.17 (m, 2H; $=$ CCH₂).

 $C_{18}H_{45}BN_2SSi_2Sn$ (507.3) Calcd. C 42.60 H 8.94 N 5.52 Found C 42.15 H 8.81 N 5.25

3,3-Diethyl-f - *(l-ethyl-2-methyl-l-propenyl)-2,4-bis(trimethylsilyl)-1-thionia-2,4-diaza-3-boratacyclobutane* (6): The same procedure was used as for the synthesis of **4a, b.** A yellowish oily liquid was left after the solvent had been removed. Attempts at purification of 6 by distillation or chromatography $[A]_2O_3$ (various grades), silica gel] led **to** decomposition, and the compound did not crystallize from pentane at -78°C . $-$ ¹H NMR (C₆D₆, 25^oC): $\delta = 0.06$ $(s, 18H; Sime₃); 0.65 (m, 4H), 1.22 (t, 6H) (BEL₂); 1.15 (t, 3H; CH₃);$ $(SiMe₃)$; 22.7 [br], 10.7 (BEt₂); 22.4, 14.5 (=CCH₃); 15.9, 16.1 10.8. $-$ ²⁹Si NMR: $\delta = 0.7$. 1.49 **(s, 3H; =CCH₃), 1.82 (s, 3H; =CCH₃).** $-$ ¹³C NMR: δ = 1.0 $(= CCH_2CH_3)$; 145.1 (= CS); 146.1 [(CH₃), C =]. - ¹¹B NMR: $\delta =$

 $C_{16}H_{39}BN_2SSi_2$ (360.6) Calcd. C 53.30 H 10.90 N 7.77 Found C 52.55 H 9.98 N 7.10

Table 2. Data of the crystal structure analysis of compound $4a^{[12]}$

Temperature: 115 K; crystal size: 0.31 ' 0.23.0.19 **mm3;** space group: P $2_1/c$; Z = 4; a = 1420.3 (4), b = 1113.9 (3), c = 1653.2 (5), β ⁽⁰) = 103.58 (2); $V = 2542.0$ (1) \times 10⁻³⁰ m³; p (calcd.) = 1.289 g/cm³; μ = 1.18 mm⁻¹; Mo-K_α radiation (graphite monochromator): λ = 71.069 pm; 4344 independent reflections, 3000 observed $(F_0 \geq 4\sigma(F))$; 2 Θ range: $3 \leq 2\Theta \leq 50^0$; no absorption correction; no extinction correction; number of parameters 278; R = 0.028, R_W = 0.028 [w⁻¹ = (σ^2 (F₀) + 0.0005 · F₀²); residual electron density: -0.490 e/A^3 (minimum) and 0.919 e/ \AA^3 (maximum).

Table 3. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement factors ($A^2 \times 10^3$)

	×	У	z	U _{eq}
Sn	3827(1)	2058(1)	5696(1)	19(1)*
Si(1)	2386(1)	$-6(1)$	7604(1)	16(1)*
Si(2)	1988(1)	3697(1)	6138(1)	$8(1)^*$
S	1754(1)	1067(1)	5995(1)	13(1)*
N(1)	2360(3)	$-19(3)$	6538(2)	12(1)*
N(2)	2449(3)	2243(3)	5947(2)	13(1)*
B	2467(4)	$-1220(5)$	5995(3)	$16(2)$ *
C(1)	1601(3)	362(4)	5032(3)	14(2)*
C(2)	1992(3)	$-726(4)$	5065(3)	16(2)*
C(3)	3318(4)	$-1066(5)$	8169(3)	29(2)*
C(4)	2717(4)	1513(5)	8036(3)	$30(2)$ *
C(5)	1203(3)	$-394(5)$	7820(3)	26(2)*
C(6)	3793(4)	980(5)	4638(3)	26(2)*
C(7)	4771(4)	1442(5)	6803(3)	$30(2)*$
C(8)	4229(4)	3817(5)	5397(3)	$27(2)*$
C(9)	1933(4)	$-1483(5)$	4297(3)	24(2)*
C(10)	1273(4)	$-1003(5)$	3511(3)	$35(2)*$
C(11)	3612(4)	$-1600(4)$	6171(3)	$20(2)*$
C(12)	3868(4)	-2726(5)	5745(4)	40(2)*
C(13)	1799(4)	$-2297(4)$	6213(3)	20(2)*
C(14)	693(4)	-2088(5)	5955(3)	30(2)*
C(15)	817(4)	3517(5)	6470(3)	$31(2)$ *
C(16)	1672(4)	4525(5)	5132(3)	$31(2)*$
C(17)	2879(4)	4483(5)	6946(3)	29(2)*

* Equivalent isotropic *U* defined as one third of the trace of the orthogonalized U_{ij} tensor.

3,4,4- *Triethyl-2-trimethylsilyl-5-trimethylstannyl-l~4-thia-2-aza-3-bora-1-cyclopentanone* (7): The procedure corresponded to that used for the preparation of **4a,** except for the stirring period at room temp. (1 h). After recrystallization from pentane, the product 7 (1.12 g, 83%) was obtained as colorless crystalline solid (m.p. 115[°]C). - MS: m/z (%) = 423 (0) [M⁺], 394 (1) [M⁺ - C₂H₅], 351 (10), 336 (73), 322 (95), 165 (100) $\lceil \text{Me}_3 \text{Sn}^+ \rceil$, 73 (12). $-$ ¹H NMR $(C_6D_6, 25^{\circ}C)$: $\delta \left[J(^{119}Sn^1H) \right] = 0.26$ (s, 9H; SnMe₃); 0.29 (s, 9H; SiMe₃); $0.5-2.2$ (m, 15H; Et, Et, BEt); 2.80 [53.3] (s, 1H; SCH).

> $C_{14}H_{34}$ BNOSSiSn (422.1) Calcd. C 39.85 H 8.13 N 3.32 B 2.56 S 7.60 Found C 38.17 H 7.57 N 3.10 B 2.47 **S** 7.21

3,3,4-Triethyl-5-methyl-2-trimethylsilyl-l-trimethylstannyloxy-114-thia-2-azonia-3-borata-1,4-cyclopentadiene (8): Under the same conditions as applied to the synthesis of 7 compound 8 was isolated $(1.63 \text{ g}, 75\%)$ as colorless crystalline solid (m.p. 116^oC). $-$ ¹H NMR $(C_6D_6, 25^{\circ}C)$: δ $[J(^{119}Sn^1H)] = 0.23$ (s, 9H; SiMe₃); 0.55 [60.5] (s, 9H; SnMe₃); 0.7-1.1 (m, 13H; CH₃, BEt₂); 1.74 (s, 3H; =CCH₃); 2.22 (m, 2H; $=$ CCH₂).

 $C_{15}H_{36}BNOSSiSn$ (436.1) Calcd. C 41.31 H 8.32 N 3.21 Found C 40.68 H 7.95 N 3.05

-
-
- **14]** B. Wrackmeyer, S. M. Frank, M. Herberhold, H. Borrmann, A. Simon, *Chem. Ber.* 1991, 124,691 697.
- **['I** R. Bussas, G. Kresze, H. Munsterer, A. Schwobel, *Sulfur Rep.* 1983,2, 215-378.
- **[6a1** D. Hanssgen. W. Roelle. *J. Oraanomet. Chem.* 1973. **63.** ^[6a] **D.** Hänssgen, W. Roelle, *J. Organomet. Chem.* **1973**, 63,
269. – ^[6b] H. W. Roesky, W. Schmieder, K. Ambrosius, Z. *Naturforsch.* B: *Anorg. Chem., Org. Chem.* 1979,34B, 197. - **[6c1** H. W. Roesky, L. Schonfelder, *Chem. Ber.* 1982,115,1460. - **[6d1** D. W. Roesky, L. Schönfelder, Chem. Ber. 1982, 115, 1460. - ^[6d] D. Hänssgen, E. Odenhausen, J. Organomet. Chem. 1977, 124, 143; A. G. Davies, J. D. Kennedy, *J. Chem. SOC. C* 1970, 1570.
- ^[7] H. Nöth, B. Wrackmeyer, "NMR Spectroscopy of Boron Com-H. Nöth, B. Wrackmeyer, "NMR Spectroscopy of Boron Compounds" in *NMR – Basic Principles and Progress* (Eds.: P.
Diehl, E. Fluck, R. Kosfeld), Springer, Berlin 1978, vol. 14, pp. Diehl, E. F.
316 – 320.
- **[81[sa1** B. Wrackmeyer, *Annu. Rep. NMR Spectrosc.* 1988, *20,* 61 -203. **Igbl** B. Wrackmeyer, R. Koster, "Analytik der Organobor-Verbindungen" in *Methoden Org. Chem. (Houben-Weyl) 4th Ed.* 1984, vol. **XIII/3c,** pp. 377-611.
- **[91** *e.* KupEe, E. Lukevics in *Isotopes in Physical and Biomedical Sciences* (Ed.: E. Buncel, K. Jones), Elsevier, Amsterdam, 1991, VOI. 2, pp. 213-295.
- [lo] B. Wrackmeyer, H. Zhou, *Main Group Met. Chem.* 1990, *13,* $99 - 117.$
- ^[11] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1985, 16, 73 186. **[12]** Further details of the crystal structure analysis of compound **4a** are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlich-technische Information mbH, D-(W)-75 14 Eggenstein-Leopoldshafen 2, F.R.G., on quoting the depository number CSD-320529, the names of the authors, and the journal citation.
- **[l3] [13a1** B. Wrackmeyer, G. Kehr, R. Boese, *Angew. Chem.* 1991, *103,* 1374-1376; *Angew. Chem. Int. Ed. Engl.* 1991, 30, **1370-1372.** - ^[136] B. Wrackmeyer, K. Wagner, A. Sebald, L. H. Merwin, R. Boese, *Magn. Reson. Chem.* **1991**, 29, S3-S10.
- ^[13c] S. Kerschl, Dissertation, Universität München, **1986.**
- **[14]** G. Menz, B. Wrackmeyer, *Z. Naturforsch. B: Anorg. Chem., Org. Chem.* 1977, *32B,* 1400- 1407.
- 0. J. Scherer, R. Wies, Z. *Naturforsch. B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol.* 1970, *25B,* 1486.

[328/92]

^[1a] B. Wrackmeyer, *Rev. Silicon, Germanium, Tin, Lead Compd.*
1982, 6, 75–148. – ^[1b] B. Wrackmeyer, *Boron Chemistry –*
Proceedings of the 6th International Meeting on Boron Chemistry Proceedings of the 6th International Meeting on Boron Chemistry (IMEBORON VI) (Ed.: S. Hermanek), World Scientific, Singapore 1987, pp. $387 - 415$. expore 1987, pp. 387 – 415.
^[2] B. Wrackmeyer, K. Wagner, *Chem. Ber.* 1991, 124, 503 – 508.
^[3] B. Wrackmeyer, K. Wagner, *Chem. Ber.* 1989, 122, 857 – 860.